How to use this plot
Make sure you have the required datafields (geopotential_height
, eastward_wind
, northward_wind
)
You can use it as is by appending this code into your mswms_settings.py
:
from mslib.mswms.mpl_hsec_styles import HS_GeopotentialWindStyle_PL
register_horizontal_layers = [] if not register_horizontal_layers else register_horizontal_layers
register_horizontal_layers.append((HS_GeopotentialWindStyle_PL, [next(iter(data))]))
If you want to modify the plot
1. Download this file
2. Put this file into your mswms_settings.py directory, e.g. ~/mss
3. Append this code into your mswms_settings.py
:
from Top_PLGeopWind import HS_GeopotentialWindStyle_PL
register_horizontal_layers = [] if not register_horizontal_layers else register_horizontal_layers
register_horizontal_layers.append((HS_GeopotentialWindStyle_PL, [next(iter(data))]))
Top_PLGeopWind.py
"""
This file is part of MSS.
:copyright: Copyright 2021-2022 by the MSS team, see AUTHORS.
:license: APACHE-2.0, see LICENSE for details.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import logging
import warnings
import numpy as np
import matplotlib.pyplot as plt
import mpl_toolkits.axes_grid1.inset_locator
import matplotlib.colors
import mpl_toolkits.basemap
from matplotlib import patheffects
from mslib.mswms.mpl_hsec import MPLBasemapHorizontalSectionStyle
from mslib.mswms.utils import Targets, get_style_parameters, get_cbar_label_format, make_cbar_labels_readable
from mslib.utils import thermolib
from mslib.utils.units import convert_to
class HS_GeopotentialWindStyle_PL(MPLBasemapHorizontalSectionStyle):
"""
Upper Air Field: Geopotential and Wind
"""
name = "PLGeopWind"
title = "Geopotential Height (m) and Horizontal Wind (m/s)"
styles = [
("default", "Wind Speed 10-85 m/s"),
("wind_10_105", "Wind Speed 10-105 m/s"),
("wind_10_65", "Wind Speed 10-65 m/s"),
("wind_20_55", "Wind Speed 20-55 m/s"),
("wind_15_55", "Wind Speed 15-55 m/s")]
# Variables with the highest number of dimensions first (otherwise
# MFDatasetCommonDims will throw an exception)!
required_datafields = [
("pl", "geopotential_height", "m"),
("pl", "eastward_wind", "m/s"),
("pl", "northward_wind", "m/s")]
def _plot_style(self):
"""
"""
bm = self.bm
ax = self.bm.ax
data = self.data
# Compute wind speed.
u = data["eastward_wind"]
v = data["northward_wind"]
wind = np.hypot(u, v)
# Plot wind contours.
# NOTE: Setting alpha=0.8 raises the transparency problem in the client
# (the imshow issue, see ../issues/transparency; surfaces with alpha
# values < 1 are mixed with grey). Hence, it is better to disable
# alpha blending here until a fix has been found. (mr 2011-02-01)
wind_contours = np.arange(10, 90, 5) # default wind contours
if self.style.lower() == "wind_10_65":
wind_contours = np.arange(10, 70, 5)
elif self.style.lower() == "wind_20_55":
wind_contours = np.arange(20, 60, 5)
elif self.style.lower() == "wind_15_55":
wind_contours = np.arange(15, 60, 5)
elif self.style.lower() == "wind_10_105":
wind_contours = np.arange(10, 110, 5)
cs = bm.contourf(self.lonmesh, self.latmesh, wind,
wind_contours, cmap=plt.cm.inferno_r)
self.add_colorbar(cs, "Wind Speed (m/s)")
# Plot geopotential height contours.
gpm = self.data["geopotential_height"]
gpm_interval = 20
if self.level <= 20:
gpm_interval = 120
elif self.level <= 100:
gpm_interval = 80
elif self.level <= 500:
gpm_interval = 40
geop_contours = np.arange(400, 55000, gpm_interval)
cs = bm.contour(self.lonmesh, self.latmesh, gpm,
geop_contours, colors="green", linewidths=2)
if cs.levels[0] in geop_contours[::2]:
lablevels = cs.levels[::2]
else:
lablevels = cs.levels[1::2]
ax.clabel(cs, lablevels, fontsize=14, fmt='%.0f')
# Convert wind data from m/s to knots for the wind barbs.
uk = convert_to(u, "m/s", "knots")
vk = convert_to(v, "m/s", "knots")
# Transform wind vector field to fit map.
lons2 = ((self.lons + 180) % 360) - 180
lons2_ind = lons2.argsort()
udat, vdat, xv, yv = bm.transform_vector(uk[:, lons2_ind], vk[:, lons2_ind],
lons2[lons2_ind], self.lats,
16, 16, returnxy=True, masked=True)
# Plot wind barbs.
bm.barbs(xv, yv, udat, vdat,
barbcolor='firebrick', flagcolor='firebrick', pivot='middle',
linewidths=0.5, length=6, zorder=1)
# Plot title.
titlestring = "Geopotential Height (m) and Horizontal Wind (m/s) " \
f"at {self.level:.0f} hPa"
titlestring += f'\nValid: {self.valid_time.strftime("%a %Y-%m-%d %H:%M UTC")}'
if self.uses_inittime_dimension():
time_step = self.valid_time - self.init_time
time_step_hrs = (time_step.days * 86400 + time_step.seconds) // 3600
titlestring += f' (step {time_step_hrs:d} hrs from {self.init_time.strftime("%a %Y-%m-%d %H:%M UTC")})'
if not self.noframe:
ax.set_title(titlestring,
horizontalalignment='left', x=0, fontsize=14)
else:
ax.text(bm.llcrnrx, bm.llcrnry, titlestring,
fontsize=10, bbox=dict(facecolor='white', alpha=0.6))