""" This file is part of MSS. :copyright: Copyright 2021-2022 by the MSS team, see AUTHORS. :license: APACHE-2.0, see LICENSE for details. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import logging import warnings import numpy as np import matplotlib.pyplot as plt import mpl_toolkits.axes_grid1.inset_locator import matplotlib.colors import mpl_toolkits.basemap from matplotlib import patheffects from mslib.mswms.mpl_hsec import MPLBasemapHorizontalSectionStyle from mslib.mswms.utils import Targets, get_style_parameters, get_cbar_label_format, make_cbar_labels_readable from mslib.utils import thermolib from mslib.utils.units import convert_to class HS_EQPTStyle_PL_01(MPLBasemapHorizontalSectionStyle): """ Upper Air Field: Equivalent Potential Temperature Equivalent potential temperature and geopotential on pressure levels. """ name = "PLEQPT01" title = "Equivalent Potential Temperature (degC) and Geopotential Height (m)" # Variables with the highest number of dimensions first (otherwise # MFDatasetCommonDims will throw an exception)! required_datafields = [ ("pl", "air_temperature", "K"), ("pl", "geopotential_height", "m"), ("pl", "specific_humidity", "kg/kg")] def _prepare_datafields(self): """ Computes relative humidity from p, t, q. """ pressure = convert_to(self.level, self.get_elevation_units(), "Pa") self.data["equivalent_potential_temperature"] = thermolib.eqpt_approx( pressure, self.data["air_temperature"], self.data["specific_humidity"]) self.data["equivalent_potential_temperature"] = convert_to( self.data["equivalent_potential_temperature"], "K", "degC") def _plot_style(self): """ """ bm = self.bm ax = self.bm.ax data = self.data filled_contours = np.arange(0, 72, 2) thin_contours = np.arange(-40, 100, 2) eqpt = data["equivalent_potential_temperature"] eqptc = bm.contourf(self.lonmesh, self.latmesh, eqpt, filled_contours, cmap=plt.cm.gist_rainbow_r) self.add_colorbar(eqptc, "Equivalent Potential Temperature (degC)") # Colors in python2.6/site-packages/matplotlib/colors.py cs = bm.contour(self.lonmesh, self.latmesh, eqpt, thin_contours, colors="grey", linewidths=0.5, linestyles="solid") if cs.levels[0] in thin_contours[::2]: lablevels = cs.levels[::2] else: lablevels = cs.levels[1::2] ax.clabel(cs, lablevels, colors="grey", fontsize=10, fmt='%.0f') # cs = bm.contour(self.lonmesh, self.latmesh, eqpt, # np.arange(100, 170, 15), colors="yellow", linewidths=1) # Plot geopotential height contours. gpm = self.data["geopotential_height"] gpm_interval = 40 if self.level <= 500 else 20 geop_contours = np.arange(400, 28000, gpm_interval) cs = bm.contour(self.lonmesh, self.latmesh, gpm, geop_contours, colors="white", linewidths=2) if cs.levels[0] in geop_contours[::2]: lablevels = cs.levels[::2] else: lablevels = cs.levels[1::2] ax.clabel(cs, lablevels, fontsize=10, fmt='%.0f') titlestring = "Equivalent Potential Temperature (degC) and Geopotential Height (m) at " \ f"{self.level:.0f} hPa" titlestring += f'\nValid: {self.valid_time.strftime("%a %Y-%m-%d %H:%M UTC")}' if self.uses_inittime_dimension(): time_step = self.valid_time - self.init_time time_step_hrs = (time_step.days * 86400 + time_step.seconds) // 3600 titlestring += f' (step {time_step_hrs:d} hrs from {self.init_time.strftime("%a %Y-%m-%d %H:%M UTC")})' if not self.noframe: ax.set_title(titlestring, horizontalalignment='left', x=0, fontsize=14) else: ax.text(bm.llcrnrx, bm.llcrnry, titlestring, fontsize=10, bbox=dict(facecolor='white', alpha=0.6))