""" This file is part of MSS. :copyright: Copyright 2021-2022 by the MSS team, see AUTHORS. :license: APACHE-2.0, see LICENSE for details. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import warnings import matplotlib import matplotlib.pyplot as plt import mpl_toolkits.axes_grid1.inset_locator from matplotlib import patheffects import numpy as np from mslib.mswms.mpl_vsec import AbstractVerticalSectionStyle from mslib.mswms.utils import Targets, get_style_parameters, get_cbar_label_format, make_cbar_labels_readable from mslib.utils import thermolib from mslib.utils.units import convert_to class VS_SpecificHumdityStyle_01(AbstractVerticalSectionStyle): """ Vertical sections of specific humidity. """ name = "VS_Q01" # title = "Specific Humdity (g/kg) and Northward Wind (m/s) Vertical Section" title = "Specific Humdity (g/kg) Vertical Section" abstract = "Specific humdity (g/kg) with temperature (K) and potential temperature (K)" # Variables with the highest number of dimensions first (otherwise # MFDatasetCommonDims will throw an exception)! required_datafields = [ ("ml", "air_pressure", "Pa"), ("ml", "air_temperature", "K"), ("ml", "specific_humidity", "g/kg"), ("ml", "northward_wind", "m/s")] def _prepare_datafields(self): """ Computes potential temperature from pressure and temperature if it has not been passed as a data field. Also computes relative humdity. """ self.data['air_potential_temperature'] = thermolib.pot_temp( self.data['air_pressure'], self.data['air_temperature']) def _plot_style(self): """ Make a relative humidity vertical section with temperature/potential temperature overlay. """ ax = self.ax curtain_p = self.data["air_pressure"] curtain_t = self.data["air_temperature"] curtain_pt = self.data["air_potential_temperature"] curtain_q = self.data["specific_humidity"] # Contour spacing. vertical_log_extent = (np.log(self.p_bot) - np.log(self.p_top)) # delta_t = 2 if vertical_log_extent < 2.2 else 4 delta_t = 2 if vertical_log_extent < 1.5 else 4 # if vertical_log_extent > 2.2: if vertical_log_extent > 1.5: delta_pt = 10 elif vertical_log_extent > 0.5: delta_pt = 5 else: delta_pt = 1. # filled_contours = np.arange(1, 16, 1) filled_contours = [0.01, 0.05, 0.1, 0.5, 1, 3, 4, 6, 8] # Filled contour plot of specific humidity. # INFO on COLORMAPS: # http://matplotlib.sourceforge.net/examples/pylab_examples/show_colormaps.html cs = ax.contourf(self.horizontal_coordinate, curtain_p, curtain_q, filled_contours, cmap=plt.cm.YlGnBu) # YlGnBu cs_q = ax.contour(self.horizontal_coordinate, curtain_p, curtain_q, filled_contours, colors="c", linestyles="solid", linewidths=1) ax.clabel(cs_q, fontsize=8, fmt='%.2f') # Contour line plot of northward wind (v). # cs_v = ax.contour(self.horizontal_coordinate, # curtain_p, curtain_v, np.arange(5,15,2.5), # colors="black", linestyles="solid", linewidths=1) # ax.clabel(cs_v, fontsize=8, fmt='%.1f') # Contour line plot of temperature. cs_t = ax.contour(self.horizontal_coordinate, curtain_p, curtain_t, np.arange(236, 330, delta_t), colors='red', linestyles='solid', linewidths=1) # gist_earth ax.clabel(cs_t, fontsize=8, fmt='%.0f') cs_t = ax.contour(self.horizontal_coordinate, curtain_p, curtain_t, [234], colors='red', linestyles='solid', linewidths=2) # gist_earth ax.clabel(cs_t, fontsize=8, fmt='%.0f') cs_t = ax.contour(self.horizontal_coordinate, curtain_p, curtain_t, np.arange(160, 232, delta_t), colors='red', linestyles='dashed', linewidths=1) # gist_earth ax.clabel(cs_t, fontsize=8, fmt='%.0f') # Contour line plot of potential temperature. cs_pt = ax.contour(self.horizontal_coordinate, curtain_p, curtain_pt, np.arange(200, 700, delta_pt), colors='orange', linestyles='solid', linewidths=1) ax.clabel(cs_pt, fontsize=8, fmt='%.1f') # Pressure decreases with index, i.e. orography is stored at the # zero-p-index (data field is flipped in mss_plot_driver.py if # pressure increases with index). self._latlon_logp_setup(orography=curtain_p[0, :]) self.add_colorbar(cs, "Specific humdity (g/kg)")